Logotipo del repositorio

REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE ANTOFAGASTA

  • Español
  • English
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Comunidades
  • Todo el repositorio
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Milton Urrutia"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Cellulose Synthase in Atacama Cyanobacteria and Bioethanol Production from Their Exopolysaccharides
    (2023) Alexandra Galetović; Gabriel Peña; Nicole Fernández; Milton Urrutia; Nataly Flores; Benito Gómez-Silva; Jocelyne Di Ruggiero; Carolina Shene; Mariela Bustamante
    Cyanobacteria produce exopolysaccharides (EPSs) as an adaptative mechanism against ultraviolet radiation and desiccation. Cellulose is present in the extracellular polymeric substance in some cyanobacteria genera and it has been proposed as a raw material for biofuel production. The goal of this work was to evaluate the cellulose presence in EPS of Atacama cyanobacteria strains and its use as an alternative and innovative biological source to produce bioethanol. The presence of cellulose was evaluated using techniques of molecular biology, bioinformatics, and electronic microscopy. The conserved motif D,D,D,35QXXRW, characteristic of processive -glycosyltransferase in all cellulose-producing organisms, was identified in the genome of the LLA-10 strain. This is evidence that cellulose synthase in the LLA-10 strain is a functional enzyme. EPS from Atacama cyanobacteria was hydrolyzed by -glucosidases (cellobiase and cellulase) and the released glucose was yeast-fermented to ethanol. Ethanol production reached 172.69 0.02 mg ethanol/g EPS after 48 h of incubation. These results are the first step in the evaluation of EPS produced by native cyanobacteria isolated from northern Chile for future biotechnological applications such as the production of bioethanol.
  • Cargando...
    Miniatura
    Ítem
    Uv-a irradiation increases scytonemin biosynthesis in cyanobacteria inhabiting halites at salar grande, atacama desert
    (2020) Gabriela Orellana; Benito Gómez-Silva; Milton Urrutia; Alexandra Galetović
    Microbial consortia inhabiting evaporitic salt nodules at the Atacama Desert are dominated by unculturable cyanobacteria from the genus Halothece. Halite nodules provide transparency to photosynthetically active radiation and diminish photochemically damaging UV light. Atacama cyanobacteria synthesize scytonemin, a heterocyclic dimer, lipid soluble, UV-filtering pigment (in vivo absorption maximum at 370 nm) that accumulates at the extracellular sheath. Our goal was to demonstrate if UV-A irradiations modulate scytonemin biosynthesis in ground halites containing uncultured Halothece sp. cyanobacteria. Pulverized halite nodules with endolithic colonization were incubated under continuous UV-A radiation (3.6 W/m2) for 96 h, at 67% relative humidity, mimicking their natural habitat. Scytonemin content and relative transcription levels of scyB gene (a key gene in the biosynthesis of scytonemin) were evaluated by spectrophotometry and quantitative RT-PCR, respectively. After 48 h under these experimental conditions, the ratio scytonemin/chlorophyll a and the transcription of scyB gene increased to a maximal 1.7-fold value. Therefore, endolithic Halothece cyanobacteria in halites are metabolically active and UV radiation is an environmental stressor with a positive influence on scyB gene transcription and scytonemin biosynthesis. Endolithobiontic cyanobacteria in Atacama show a resilient evolutive and adaptive strategy to survive in one of the most extreme environments on Earth.
©2024 -Ciencia Abierta