Facultad de Educación
URI permanente para esta comunidad
Examinar
Examinando Facultad de Educación por Título
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Baroreflex Modulation During Acute High-Altitude Exposure in Rats(2020) Ana Rosa Beltrán; Alexis Arce-Álvarez; Rodrigo Ramirez-Campillo; Manuel Vásquez-Muñoz; Magdalena von Igel; Marco Antonio Ramírez; Rodrigo Del Rio; David C. AndradeBaroreflex (BR) control is critically dependent of sympathetic and parasympathetic modulation. It has been documented that during acute hypobaric hypoxia there is a BR control impairment, however, the effect of a natural hypoxic environment on BR function is limited and controversial. Therefore, the aim of this study was to determine the effect of acute High-Altitude exposure on sympathetic/parasympathetic modulation of BR control in normal rats. Male Sprague Dawley rats were randomly allocated into Sea-Level (n = 7) and High-Altitude (n = 5) (3,270 m above sea level) groups. The BR control was studied using phenylephrine (Phe) and sodium nitroprusside (SNP) through sigmoidal analysis. The autonomic control of the heart was estimated using heart rate variability (HRV) analysis in frequency domain. Additionally, to determine the maximum sympathetic and parasympathetic activation of BR, spectral non-stationary method analysis, during Phe (0.05 mg/mL) and SNP administration (0.10 mg/mL) were used. Compared to Sea-Level condition, the High-Altitude group displayed parasympathetic withdrawal (high frequency, 0.6–2.4 Hz) and sympathoexcitation (low frequency, 0.04–0.6 Hz). Regarding to BR modulation, rats showed a significant decrease (p < 0.05) of curvature and parasympathetic bradycardic responses to Phe, without significant differences in sympathetic tachycardic responses to SNP after High-Altitude exposure. In addition, the non-stationary analysis of HRV showed a reduction of parasympathetic activation (Phe) in the High-Altitude group. Our results suggest that acute exposure to High-Altitude produces an autonomic and BR control impairment, characterized by parasympathetic withdrawal after 24 h of high-altitude exposure.Ítem Isolation of Thermophilic Bacteria from Extreme Environments in Northern Chile(2024) Bernardita Valenzuela; Francisco Solís Cornejo; Rubén Araya; Pedro ZamoranoThe northern region of Chile boasts unique geographical features that support the emergence of geothermal effluents, salt lagoons, and coastal creeks. These extreme climate conditions create polyextreme habitats for microorganisms, particularly adapted to survive these harsh environments. These extremophilic microorganisms hold immense potential as a source of hydrolytic enzymes, among other biotechnological applications. In this study, we isolated 15 strains of aerobic thermophilic bacteria (45–70 ◦C) from sediment samples collected at five different ecological sites, including hot springs, geothermal fields, and lagoons in the Atacama Desert and Andes high planes. Analyses of the 16S rRNA gene sequences of the isolates showed a close genetic similarity (98–100%) with microorganisms of the genera Parageobacillus, Geobacillus, Anoxybacillus, and Aeribacillus. Notably, these thermophiles exhibited significant hydrolytic enzyme activity, particularly amylases, lipases, and proteases. These findings underscore the potential of using these thermophilic bacterial strains as an invaluable source of thermozymes with wide-ranging applications in diverse industries, such as detergent formulations, pharmaceutical processing, and food technology. This research highlights the ecological significance of these extreme environments in the Atacama Desert and Andes high plains, which serve as vital ecological niches housing extremophilic bacteria as a genetic source of relevant thermozymes, promising great potential for innovation in the biotechnology industry.